The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals

نویسندگان

  • JOEL E. KOSTKA
  • JUN WU
  • KENNETH H. NEALSON
  • JOSEPH W. STUCKI
چکیده

Although clay mineral reduction is thought to occur primarily as a result of the activity of indigenous microorganisms in soil, most research has focused on chemical mechanisms of Fe reduction within clay minerals. Here we show that bacteria isolated from soils and sediments catalyze the rapid reduction of structural Fe(III) in the smectite clay minerals. The extent of Fe(III) reduction is large, from 46% to .90%. Furthermore, the effects of structural Fe(III) reduction by bacteria on the surface chemistry of smectites are dramatic. Swelling pressure, as measured by water content, was shown to decrease by 40% to 44% in smectites reduced by bacteria as compared to unaltered or reoxidized smectites. Particle surface area decreased by 26% to 46% in response to bacterial reduction, and the surface charge density as measured by the ratio of cation exchange capacity to specific surface area increased over the same scale. Measurements of swelling pressure in smectite saturated with the organic cation trimethylphenylammonium (TMPA) indicated that the hydrophilic character of the clay mineral surface was enhanced upon reduction. The valence state of Fe in the octahedral layer of smectite, as revealed through reflectance spectra, correlated to the amount of Fe(III) reduced in bacterial cultures, providing information on the mechanism of intervalence electron transfer in bacterially reduced clay minerals. The extent of reduction and surface chemical effects catalyzed by bacteria in this study are similar in magnitude to those observed previously for potent inorganic reductants. Given that clay minerals dominate the solid phase of porous media and that Fe(III)-reducing bacteria are abundant in soils and aquatic sediments, these data suggest that bacterial clay mineral reduction may play an important role in soil biogeochemistry, affecting processes such as nutrient cycles and the fate of organic contaminants. Copyright © 1999 Elsevier Science Ltd

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral.

Interfacial electron transfer has been shown to occur between sorbed Fe(II) and structural Fe(III) in Fe oxides, but it is unknown whether a similar reaction occurs between sorbed Fe(II) and Fe(III)-bearing clay minerals. Here, we used the isotopic specificity of (57)Fe Mössbauer spectroscopy to demonstrate electron transfer between sorbed Fe(II) and structural Fe(III) in an Fe-bearing smectite...

متن کامل

Growth of thermophilic and hyperthermophilic Fe(III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor.

Recent studies have suggested that the structural Fe(III) within phyllosilicate minerals, including smectite and illite, is an important electron acceptor for Fe(III)-reducing microorganisms in sedimentary environments at moderate temperatures. The reduction of structural Fe(III) by thermophiles, however, has not previously been described. A wide range of thermophilic and hyperthermophilic Arch...

متن کامل

Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans

Mineral dust supplied to remote ocean regions stimulates phytoplankton growth through delivery of micronutrients, notably iron (Fe). Although attention is usually paid to Fe (hydr)oxides as major sources of available Fe, Fe-bearing clay minerals are typically the dominant phase in mineral dust. The mineralogy and chemistry of clay minerals in dust particles, however, are largely unknown. We con...

متن کامل

Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1.

Structural Fe in clay minerals is an important, albeit poorly characterized, redox-active phase found in many natural and engineered environments. This work develops an experimental approach to directly assess the redox properties of a natural Fe-bearing smectite (ferruginous smectite, SWa-1, 12.6 wt % Fe) with mediated electrochemical reduction (MER) and oxidation (MEO). By utilizing a suite o...

متن کامل

The Effect of Microbial Fe(iii) Reduction on Smectite Flocculation

ÐThis study was undertaken to investigate the changes in flocculation properties of Fe-rich smectite (nontronite, NAu-1) suspensions, including settling velocity, aggregate size and floc architecture associated with microbial Fe(III)-reduction in the smectite structure. The dissimilatory Fe-reducing bacterium Shewanella oneidensis MR-1 was incubated with lactate as the electron donor and struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999